• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation of nitrate distribution under drip irrigation using artificial neural networks

    Thumbnail
    View/Open
    ABSTRACT.pdf (9.971Kb)
    Date
    2004-04
    Author
    Li, Jiusheng
    Yoder, RE
    Odhiambo, LO
    Zhang, J
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Accurate knowledge of nitrate distribution in the soil under fertigation through drip-irrigation systems is fundamentally important for system design and management. The determination of nitrate distribution through modeling represents a highly complex nonlinear problem that includes adsorption, transformation, convection, and dispersion. For this reason, an alternative methodology is proposed, which combines artificial neural networks (ANN) and laboratory experiments. Seventeen experiments with apparent discharge rates varying from 0.6 to 7.8 l/h, the apparent cylindrical applied volume from 6 to 15 l, and the input concentration from 100 to 700 mg/l were conducted to provide a database for establishing the ANN architecture. The model input parameters were initial soil water content, initial nitrate concentration in the soil, discharge rate, input concentration of fertilizer (NH4NO3), applied volume, and final soil water content. The model output was nitrate concentration in the soil after fertigation. A total of 298 vectors were used to train the ANN model, and 212 independent vectors were used to test the model. Results of the test show a good correspondence with a determination coefficient (r 2) of 0.83 between the model-estimated nitrate concentration in the soil and laboratory-measured nitrate concentration in the soil. These results show that the optimized ANN models are reasonably accurate and can provide an easy and efficient means of estimating nitrate distribution in the soil under fertigation through drip-irrigation systems.
    URI
    http://link.springer.com/article/10.1007/s00271-003-0090-6#page-1
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/41833
    Citation
    Irrigation Science April 2004, Volume 23, Issue 1, pp 29-37
    Publisher
    University of Nairobi
     
    College of Biological and Physical Sciences,University of Nairobi
     
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback