• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The structural functional correlation in the design of the bat lung. A morphometric study

    Thumbnail
    View/Open
    full text .pdf (1.464Mb)
    Date
    1984
    Author
    Maina, JN
    King, AS
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    The lungs of five species of bat Pipistrellus pipistrellus, Miniopterus minor (Peters), Tadarida mops (De Blainville), Cynopterus brachyotis (Muller) and Cheiromeles torquatus (Horstield) have been analysed by morphometric techniques. The mean body weight (W) ranged from 5 g in Pipistrellus pipistrellus to 173 g in Cheiromeles torquatus; the lung volume (VL) ranged from 0.3 cm3 in Pipistrellus to 10 cm3 in Cheiromeles. The volume densities or the main components of the bat lung, namely the parenchyma [VV(p,L)] (the gas exchange region) and the non-parenchyma [VV(np,L)], were closely similar, the VV(p,L) constituting a mean value of 84.2% and the VV(np,L) 15.8% in the five species. The VL, the surface area of the blood--gas (tissue) barrier (St), the pulmonary capillary blood volume (Vc), and the total morphometric pulmonary diffusing capacity (DLO2) were all strongly correlated with body weight. The harmonic mean thickness of the blood--gas (tissue) barrier (tau ht) and the surface density of the blood--gas (tissue) barrier [SV(t,p)] were poorly correlated with W. The bats had a remarkably higher VL than either birds or terrestrial mammals. The Vc in the bat lung was similar to that in the bird lung but higher than that of the terrestrial mammals. The bats had a more extensive St than either the birds or the terrestrial mammals. In the bats the tau ht was thicker than in the birds but thinner than that of the terrestrial mammals. These pulmonary structural adaptations culminated in a higher DLO2 in the bat than either in the birds or in the terrestrial mammals. The superior morphometric properties of the bat lung coupled with the established physiological adaptations may help to explain how the bat lung is capable of providing the immense amount of oxygen demanded by flight
    URI
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/49640
    Citation
    J. Exp. Biol 111 (1984): 43-63.
    Publisher
    Department of Veterinary Anatomy, University of Nairobi
    Collections
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM) [5481]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback