• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Morphometrics of the avian lung. 4. The structural design of the charadriiform lung

    Thumbnail
    Date
    1987
    Author
    Maina, JN
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    The lungs of five charadriiform species of bird, two of which are good divers and three predominantly flyers (soarers and gliders) have been analysed by morphometric techniques. Largely the morphometric structural values in the divers significantly exceeded those of the flyers (gulls). The average weight specific surface area of the blood-gas (tissue) barrier in the divers (28.45 +/- 2.05 cm2 X g-1 SD) surpassed that of the flyers (23.5 +/- 3.61 cm2 X g-1 SD). The divers had a higher volume of the pulmonary capillary blood per unit body weight (4.42 +/- 0.11 cm3 X kg-1 SD) than the flyers (2.84 +/- 0.58 cm3 X kg-1 SD). The weight specific volume of the lung in the divers (34.90 +/- 3.11 cm3 X kg-1 SD) exceeded that of the flyers (26.94 +/- 3.15 cm3 X kg-1 SD). The total morphometric pulmonary diffusing capacity per unit body weight in the divers (4.73 +/- 0.05 ml O2 X (min X mm Hg X kg)-1 SD) was higher than that of the flyers (3.09 +/- 0.47 ml O2 X (min X mm Hg X kg)-1 SD). The divers, however, had a notably thicker blood-gas (tissue) barrier with a harmonic mean thickness of 0.212 +/- 0.03 micron SD compared to that of the flyers (0.138 +/- 0.02 micron SD). The data acquired here commensurate the modes of life exhibited by these two groups of bird. The divers, which are relatively energetic birds, expend a lot of energy to move and stay underwater, concomitantly undergoing prolonged asphyxia during submergence and may hence need to extract as much of the oxygen in the pulmonary air as possible to prolong a dive. These birds appear in general to have structurally better adapted lungs than those of the gulls, birds which to a large extent exhibit relatively less energetic soaring and gliding flights.
    URI
    http://www.ncbi.nlm.nih.gov/pubmed/3602614
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/49720
    Citation
    Respir Physiol. 1987 Apr;68(1):99-119.
    Publisher
    Department of Veterinary Anatomy, University of Nairobi
    Collections
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM) [5481]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback