• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stereological methods for estimating the functional surfaces of the chiropteran small intestine.

    Thumbnail
    View/Open
    Full text (2.051Mb)
    Date
    1995
    Author
    Makanya, AN
    Mayhew, TM
    Maina, JN
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    A tissue sampling protocol has been devised for studying the functional surfaces of chiropteran small intestine and drawing comparisons within and between species. The goal was to obtain minimally biased stereological estimates of villous and microvillous surface areas and the numbers of microvilli. The approach is illustrated using the intestines of 3 bats (from frugivorous and entomophagous groups) and is based on the use of vertical sections and cycloid test arcs. A sampling scheme with 3 levels was employed. At level 1 (macroscopy), primary mucosal area was estimated from intestinal length and perimeter. Amplification factors due to villi were estimated at level 2 (light microscopy, LM) whilst microvillous amplifications were estimated at level 3 (transmission electron microscopy, TEM). The absolute surfaces, lengths and diameters of microvilli were used to calculate packing densities and absolute numbers. Estimated villous surface areas of the entire small intestine were 44.4 cm2 (Miniopterus inflatus, entomophagous), 410 cm2 (Epomophorus wahlbergi, frugivorous) and 237 cm2 (Lisonycteris angolensis, frugivorous). Corresponding microvillous surface areas were 0.11, 1.69 and 1.01 m2 whilst the numbers of microvilli per intestine were 4.5, 23.4 and 8.8 x 1011. When normalised for body weights, microvillous surfaces were 122, 246 and 133 cm2/g respectively. The functional surfaces of the fruit bat appear to be more extensive than those of the entomophagous bat.
    URI
    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167431/pdf/janat00130-0100.pdf
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/50104
    Citation
    J Anat. 1995 October; 187(Pt 2): 361–368.
    Publisher
    Department of Veterinary Anatomy, University of Nairobi
     
    Department of Human Morphology, University of Nottingham, UK.
     
    Subject
    Bat
    Intestine
    Villi
    Microvilli
    Collections
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM) [5481]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback