• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and Remodeling of the Vertebrate Blood-Gas Barrier

    Thumbnail
    View/Open
    Full text (4.575Mb)
    Date
    2013
    Author
    Makanya, AN
    Anagnostopoulou, Aikaterini
    Djonov, Valentin
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG-β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung
    URI
    http://www.hindawi.com/journals/bmri/2013/101597/
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/50864
    Citation
    BioMed Research International Volume 2013 (2013),
    Publisher
    BioMed Research International
     
    Department of Veterinary Physiology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
     
    Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Berne, Switzerland
     
    Collections
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM) [5481]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback