• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The role of dispersal and vicariance in the Pleistocene history of an East African mountain rodent, Praomys delectorum

    Thumbnail
    View/Open
    Abstract.pdf (32.80Kb)
    Date
    2013
    Author
    Bryja, Josef
    Mikula, Ondřej
    Patzenhauerová, Hana
    Oguge, Nicholas O
    Šumbera, Radim
    Verheyen, Erik
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Aim Species living in East African montane forests have highly fragmented distributions. Plio-Pleistocene climatic cycles, however, may have allowed temporary contact between forest blocks, thereby allowing gene flow. Our aim was to reconstruct the colonization history of Praomys delectorum, a rodent species adapted to montane forests. We tested two alternative scenarios: (1) the occurrence of a series of vicariance events related to Quaternary climatic changes; and (2) colonization from a single origin through successive dispersal events. Location Montane forests of East Africa. Methods Analyses were based on large-scale sampling covering the complete range of the species distribution. We assessed genetic structure and historical demography using a combination of mitochondrial and nuclear markers. Morphological differences between allopatric populations were analysed using a geometric morphometric approach. Results Populations of P. delectorum are genetically differentiated along the north–south axis of the distribution range, consistent with postulated vicariance events. The oldest vicariance event, which separated the species into three main genetic groups, dates to the beginning of the Pleistocene. Further fragmentation within the three main lineages is consistent with successive vicariance events, probably linked to Pleistocene climatic cycles. Morphological variation between geographically structured populations may indicate local environmental adaptations. Main conclusions The most likely explanation for the strong genetic differentiation among fragmented populations is a series of vicariance events caused by periodic fragmentation of montane forests that resulted from climatic oscillations in the Pleistocene, rather than successive dispersal events. The recently proposed splitting of P. delectorum into three allopatric morphospecies only partly reflects the observed genetic structure.
    URI
    http://hdl.handle.net/11295/64491
    Citation
    Journal of Biogeography Volume 41, Issue 1, pages 196–208, January 2014
    Publisher
    University of Nairobi
    Subject
    Cytochrome b; Eastern Arc Mountains; microsatellites; montane forests; Pleistocene climate changes; Praomys delectorum ; Muridae; Southern Rift
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback