• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint queue-perturbed and weakly coupled power control for wireless backbone networks

    Thumbnail
    View/Open
    Fulltext (441.9Kb)
    Date
    2012
    Author
    Wyk, Barend Jacobus Van
    Kogeda, Okuthe P
    Djouani, Karim
    Olwal, Thomas Otieno
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Wireless Backbone Networks (WBNs) equipped with Multi-Radio Multi-Channel (MRMC) configurations do experience power control problems such as the inter-channel and co-channel interference, high energy consumption at multiple queues and unscalable network connectivity. Such network problems can be conveniently modelled using the theory of queue perturbation in the multiple queue systems and also as a weak coupling in a multiple channel wireless network. Consequently, this paper proposes a queue perturbation and weakly coupled based power control approach forWBNs. The ultimate objectives are to increase energy efficiency and the overall network capacity. In order to achieve this objective, a Markov chain model is first presented to describe the behaviour of the steady state probability distribution of the queue energy and buffer states. The singular perturbation parameter is approximated from the coefficients of the Taylor series expansion of the probability distribution. The impact of such queue perturbations on the transmission probability, given some transmission power values, is also analysed. Secondly, the inter-channel interference is modelled as a weakly coupled wireless system. Thirdly, Nash differential games are applied to derive optimal power control signals for each user subject to power constraints at each node. Finally, analytical models and numerical examples show the efficacy of the proposed model in solving power control problems in WBNs.
    URI
    http://www.degruyter.com/view/j/amcs.2012.22.issue-3/v10006-012-0056-z/v10006-012-0056-z.xml
    http://hdl.handle.net/11295/64783
    Citation
    International Journal of Applied Mathematics and Computer Science. Volume 22, Issue 3, Pages 749–764, ISSN (Online) , ISSN (Print) 1641-876X, DOI: 10.2478/v10006-012-0056-z, September 2012
    Subject
    optimal control theory
    wireless backbone networks
    weak coupling theory
    singular perturbation theory
    decentralized power control
    Collections
    • Faculty of Engineering, Built Environment & Design (FEng / FBD) [1465]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback