• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Occurrence of Aspergillus Species and Aflatoxin Contamination in Raw and Roasted Peanuts from Formal and Informal Markets in Eldoret and Kericho Towns, Kenya

    Thumbnail
    Date
    2013
    Author
    Nyirahakizimana, H
    Mwamburi, L
    Wakhisi, J
    Mutegi, CK
    Christie, ME
    Wagacha, JM
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    The population and diversity of fungal species and levels of aflatoxin contamination were investigated in 228 marketed peanut samples; 140 from formal and 88 from informal markets, in Kericho and Eldoret towns of Kenya. Ground peanut samples were cultured on Modified Dichloran Rose Bengal (MDRB) agar while aflatoxin level was quantified based on indirect competitive ELISA. Correlation between the incidence of major aflatoxin-producing fungal species and aflatoxin levels was also established. Fungal species commonly isolated from the peanut samples included Aspergillus flavus L strain, A. flavus S strain, A. parasiticus, A. tamarii, A. caelatus, A. alliaceus (all of Aspergillus section Flavi) and A. niger. Fungi isolated in low frequency included Fusarium spp., Penicillium spp., Mucor spp. and Rhizopus spp. Aflatoxin levels in peanut products ranged from 0 to 2345 μg/kg in raw peanuts, 0 to 382 μg/kg in roasted coated peanuts, and 0 to 201 μg/kg in roasted de-coated peanuts. Overall, levels of total aflatoxin were higher in samples from informal (mean = 97.1 μg/kg) than formal (mean = 55.5 μg/kg) market outlets. There was a positive and significant correlation (R2 = 0.63; p ≤ 0.05) between aflatoxin levels and the major aflatoxin producing fungi in raw peanuts from formal markets in Eldoret town. Additionally, total aflatoxin in raw peanut samples from informal markets in Kericho was positively and significantly correlated (R2 = 0.81; p ≤ 0.05) to the population of A. flavus (L and S strains). In roasted coated peanuts sampled from formal market outlets in Eldoret, aflatoxin levels correlated positively and significantly (R2 = 0.37; p ≤ 0.05) with A. flavus S strain. There is need to create awareness among peanut traders and consumers on proper handling of peanuts and health risks associated with consumption of unsafe peanut products.
    URI
    http://oar.icrisat.org/6989/
    http://hdl.handle.net/11295/65271
    Citation
    Advances in Microbiology, 3 (4). pp. 333-342.
    Publisher
    Universty of Nairobi
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback