• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • BioMedical Journal Articles
    • Biomed Full Text Articles
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • BioMedical Journal Articles
    • Biomed Full Text Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    Thumbnail
    View/Open
    ABSTRACT.pdf (10.78Kb)
    FULL TEXT .pdf (1.392Mb)
    Date
    2014
    Author
    Mweresa, Collins K
    Omusula, Philemon
    Otieno, Bruno
    van Loon, Joop JA
    Takken, Willem
    Mukabana, Wolfgang R
    Type
    Article; en
    Language
    en
    Metadata
    Show full item record

    Abstract
    Background: Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods: The attraction of laboratory-reared and wild Anopheles gambiae complex mosquitoes to CO2 generated from yeast-fermentation of molasses was assessed under semi-field and field conditions in western Kenya. In the field, responses of wild Anopheles funestus were also assessed. Attraction of the mosquitoes to a synthetic mosquito attractant, Mbita blend (comprising ammonia, L-lactic acid, tetradecanoic acid and 3-methyl-1-butanol) when augmented with CO2 generated from yeast fermentation of either molasses or sucrose was also investigated. Results: In semi-field, the release rate of CO2and proportion ofAn. gambiae mosquitoes attracted increased in tandem with an increase in the quantity of yeast-fermented molasses up to an optimal ratio of molasses and dry yeast. More An. gambiae mosquitoes were attracted to a combination of the Mbita blend plus CO2 produced from fermenting molasses than the Mbita blend plus CO2 from yeast-fermented sucrose. In the field, significantly more female An. gambiae sensu lato mosquitoes were attracted to the Mbita blend augmented with CO2 produced by fermenting 500 g of molasses compared to 250 g of sucrose or 250 g of molasses. Similarly, significantly more An. funestus Culex and other anopheline mosquito species were attracted to the Mbita blend augmented with CO2 produced from fermenting molasses than the Mbita blend with CO2 produced from sucrose. Augmenting the Mbita blend with CO2produced from molasses was associated with high catches of blood-fed An. gambiae s.l. and An. funestus mosquitoes. Conclusion: Molasses is a suitable ingredient for the replacement of sucrose as a substrate for the production of CO2 for sampling of African malaria vectors and other mosquito species. The finding of blood-fed malaria vectors in traps baited with the Mbita blend and CO2 derived from molasses provides a unique opportunity for the study of host-vector interactions.
    URI
    http://www.biomedcentral.com/content/pdf/1475-2875-13-160.pdf
    http://hdl.handle.net/11295/71803
    Citation
    Malaria Journal 2014, 13 :16
    Publisher
    University of Nairobi
    Subject
    Carbon dioxide, Sugar, Sucrose, Molasses, Anopheles gambiae , Anopheles funestus , Malaria, Mosquitoes, Attraction, Behaviour
    Collections
    • Biomed Full Text Articles [201]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback