• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dry Spell Analysis And Maize Yields For Two Semi-arid Locations In East Africa

    Thumbnail
    Date
    2003-06
    Author
    Barron, Jennie
    Rockström, Johan
    Gichuki, Francis
    Hatibu, Nuhu
    Type
    Article; en
    Language
    en
    Metadata
    Show full item record

    Abstract
    High variability in rainfall occurrence and amounts together with high evaporative demand create severe constraints for crop growth and yields in dry sub-humid and semi-arid farming areas in east Africa. Meteorological analyses on rainfall distribution are common, but generally focus on assessing drought occurrence on annual and seasonal basis. This paper presents two types of seasonal dry spell analysis, using easy accessible data on daily rainfall and evapotranspiration for two semi-arid locations in east Africa for 20–23 years. The meteorological dry spell analysis was obtained by Markov chain process, and the agricultural dry spell analysis used rainfall data in a simple water balance model also describing impact on maize (Zea mays L.) growth due to water availability on clay or sandy soil. The meteorological dry spell analysis showed a minimum probability of 20% of dry spells exceeding 10 days at both sites, increasing to 70% or more depending on onset of season, during approximate flowering and early grain filling stage. The agricultural dry spell analysis showed that maize was exposed to at least one dry spell of 10 days or longer in 74–80% of seasons at both sites. Maize on sandy soil experienced dry spells exceeding 10 days, three–four times more often than maize on clay soil during flowering and grain filling stages. In addition, the water balance analysis indicated substantial water losses by surface runoff and deep percolation as the crop utilised only 36–64% on average of seasonal rainfall. Such large proportion of non-productive water flow in the field water balance may provide scope for dry spell mitigation through improved water management strategies.
    URI
    http://www.sciencedirect.com/science/article/pii/S0168192303000376
    http://hdl.handle.net/11295/73678
    Citation
    Agricultural and Forest Meteorology Volume 117, Issues 1–2, 30 June 2003, Pages 23–37
    Publisher
    University of Nairobi
    Subject
    Dry spell analysis; Rainfall distribution; East Africa; Semi-arid; Maize; Water balance
    Collections
    • Faculty of Agriculture & Veterinary Medicine (FAg / FVM) [5481]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback