• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Engineering, Built Environment & Design (FEng / FBD)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Methods for Aircraft Design

    Thumbnail
    Date
    1998
    Author
    Ogot, Madara
    Pelz, Richard B
    Type
    Article; en
    Language
    en
    Metadata
    Show full item record

    Abstract
    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
    URI
    http://ntrs.nasa.gov/search.jsp?R=19990009940
    http://hdl.handle.net/11295/86763
    Citation
    SAO/NASA ADS Physics Abstract Service
    Collections
    • Faculty of Engineering, Built Environment & Design (FEng / FBD) [1465]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback