• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Health Sciences (FHS)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Health Sciences (FHS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Virus-encoded microRNA contributes to the molecular profile of EBV-positive burkitt lymphomas.

    Thumbnail
    Date
    2015-07
    Author
    Piccaluga, PP
    Navari, M
    Falco, G
    Ambrosio, MR
    Lazzi, S
    Fuligni, F
    Bellan, C
    Rossi, M
    [et al.]
    Type
    Article; en
    Language
    en
    Metadata
    Show full item record

    Abstract
    Burkitt lymphoma (BL) is an aggressive neoplasm characterized by consistent morphology and phenotype, typical clinical behavior and distinctive molecular profile. The latter is mostly driven by the MYC over-expression associated with the characteristic translocation (8;14) (q24; q32) or with variant lesions. Additional genetic events can contribute to Burkitt Lymphoma pathobiology and retain clinical significance. A pathogenetic role for Epstein-Barr virus infection in Burkitt lymphomagenesis has been suggested; however, the exact function of the virus is largely unknown.In this study, we investigated the molecular profiles (genes and microRNAs) of Epstein-Barr virus-positive and -negative BL, to identify specific patterns relying on the differential expression and role of Epstein-Barr virus-encoded microRNAs.First, we found significant differences in the expression of viral microRNAs and in selected target genes. Among others, we identified LIN28B, CGNL1, GCET2, MRAS, PLCD4, SEL1L, SXX1, and the tyrosine kinases encoding STK10/STK33, all provided with potential pathogenetic significance. GCET2, also validated by immunohistochemistry, appeared to be a useful marker for distinguishing EBV-positive and EBV-negative cases. Further, we provided solid evidences that the EBV-encoded microRNAs (e.g. BART6) significantly mold the transcriptional landscape of Burkitt Lymphoma clones.In conclusion, our data indicated significant differences in the transcriptional profiles of EBV-positive and EBV-negative BL and highlight the role of virus encoded miRNA.
    URI
    http://www.ncbi.nlm.nih.gov/pubmed/26325594
    http://hdl.handle.net/11295/91566
    Citation
    Oncotarget. 2015 Jul 31
    Publisher
    University of Nairobi
    Subject
    BART6; EBV; burkitt lymphoma; miRNA; pathogenesis
    Collections
    • Faculty of Health Sciences (FHS) [10415]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback