• Login
    • Login
    Advanced Search
    View Item 
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    •   UoN Digital Repository Home
    • Journal Articles
    • Faculty of Science & Technology (FST)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dry season ecology of Anopheles gambiae complex mosquitoes at larval habitats in two traditionally semi-arid villages in Baringo, Kenya

    Thumbnail
    Date
    2/28/2011
    Author
    Mala, AO
    Irungu, LW
    Shililu, JI
    Muturi, EJ
    Mbogo, CC
    Njagi, JK
    Githure, JI
    Type
    Article
    Language
    en
    Metadata
    Show full item record

    Abstract
    Background: Pre-adult stages of malaria vectors in semi-arid areas are confronted with highly variable and challenging climatic conditions. The objective of this study was to determine which larval habitat types are most productive in terms of larval densities in the dry and wet seasons within semi-arid environments, and how vector species productivity is partitioned over time. Methods: Larval habitats were mapped and larvae sampled longitudinally using standard dipping techniques. Larvae were identified to species level morphologically using taxonomic keys and to sub-species by polymerase chain reaction (PCR) methods. Physical characteristics of larval habitats, including water depth, turbidity, and presence of floating and emergent vegetation were recorded. Water depth was measured using a metal ruler. Turbidity, pH, conductivity, dissolved oxygen, temperatures salinity and total dissolved solids (TDS) were measured in the field using the hand-held water chemistry meters. Results: Mean larval densities were higher in the dry season than during the wet season but the differences in density were not statistically significant (F = 0.04, df = 1, p = 0.8501). Significantly higher densities of larvae were collected in habitats that were shaded and holding turbid, temporary and still water. Presence of emergent or floating vegetation, habitat depth, habitat size and habitat distance to the nearest house did not significantly affect larval density in both villages. There was a weakly positive relationship between larval density and salinity (r = 0.19, p < 0.05), conductivity (r = 0.05, p = 0.45) and total dissolved solids (r = 0.17, p < 0.05). However, the relationship between water temperature and larval density was weakly negative (r = 0.15, p = 0.35). All statistical tests were significant at alpha = 0.05. Conclusion: Breeding of malaria vector mosquitoes in Baringo is driven by predominantly human-made and permanent breeding sites in which Anopheles arabiensis and Anopheles funestus breed at a low level throughout the year. Permanent water sources available during the dry season serve as inocula by providing "larval seed" to freshly formed rain-fed habitats during the rainy season. The highly localized and focal nature of breeding sites in these semi-desert environments provides a good opportunity for targeted larval control since the habitats are few, well-defined and easily traceable.
    URI
    http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/9711
    http://www.ncbi.nlm.nih.gov/pubmed/21352608
    Subject
    Baringo
    Anopheles gambiae
    Malaria
    Collections
    • Faculty of Science & Technology (FST) [4284]

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback

     

     

    Useful Links
    UON HomeLibrary HomeKLISC

    Browse

    All of UoN Digital RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Copyright © 2022 
    University of Nairobi Library
    Contact Us | Send Feedback